Select Publications

Identification of the posttranslational modifications present in centromeric chromatin

Bailey, A.O., T. Panchenko, J. Shabanowitz, S.M. Lehman, D.L. Bai, D.F. Hunt, B.E. Black*, and D.R. Foltz*. 2016. Identification of the posttranslational modifications present in centromeric chromatin. Mol. Cell. Proteomics, 15:918-931. (*corresponding authors; contributed equally) PMID: 26685127

The CENP-L-N complex forms a critical note in an integrated meshwork of interactions at the centromere-kinetochore interface

McKinley, K.L., N. Sekulic, L.Y. Guo, T. Tsinman, B.E. Black, and I.M. Cheeseman. 2015. The CENP-L-N complex forms a critical note in an integrated meshwork of interactions at the centromere-kinetochore interface. Mol. Cell, 60:886-898. PMID: 26698661

PARP-1 activation requires local unfolding of an autoinhibitory domain

Dawicki-McKenna, J.M., M.F. Langelier, J.E. DeNizio, A.A. Riccio, C.D. Cao, K.R. Karch, M. McCauley, J.D. Steffen, B.E. Black*, and J.M. Pascal*. 2015. PARP-1 activation requires local unfolding of an autoinhibitory domain. Mol. Cell, 60:755-768. (*corresponding author; contributed equally) PMID: 26626480

A novel hybrid single molecule approach reveals spontaneous motion in the nucleosome.

Wei, S., S.J. Falk, B.E. Black, and T.-H. Lee. 2015. A novel hybrid single molecule approach reveals spontaneous motion in the nucleosome. Nucleic Acids Res., 43:e111 PMID: 26013809

CENP-C reshapes and stabilizes CENP-A nucleosomes at the centromere.

Falk, S.J., L.Y. Guo, N. Sekulic, E.M. Smoak, T. Mani, G.A. Logsdon, K. Gupta, L.E.T. Jansen, G.D. Van Duyne, S.A. Vinogradov, M.A. Lampson, and B.E. Black*. 2015. CENP-C reshapes and stabilizes CENP-A nucleosomes at the centromere. Science, 348:699-703. (*corresponding author; contributed equally) PMID: 25954010

Both tails and the centromere targeting domain of CENP-A are required for centromere establishment.

Logsdon, G.L., E. Barrey, E.A. Bassett, J.E. DeNizio, L.Y. Guo, T. Panchenko, J.M. Dawicki-McKenna, P. Heun, and B.E. Black*. 2015. Both tails and the centromere targeting domain of CENP-A are required for centromere establishment. J. Cell Biol., 208:521-531 (*corresponding author) PMID: 25713413

The quantitative architecture of centromeric chromatin.

Bodor, D.L., J.F. Mata, M. Sergeev, A.F. David, K.J. Salimian, T. Panchenko, D.W. Cleveland, B.E. Black, J.V. Shah, and L.E.T. Jansen. 2014. The quantitative architecture of centromeric chromatin. Elife, 3:e02137. PMID: 25027692

DAXX co-folds with H3.3/H4 using high local stability conferred by the H3.3 variant recognition residues.

DeNizio, J., S.J. Elsässer, and B.E. Black*. 2014. DAXX co-folds with H3.3/H4 using high local stability conferred by the H3.3 variant recognition residues. Nucleic Acids Res., 42:4318-4331. (*corresponding author) PMID: 24493739

CENP-A arrays are more condensed than canonical arrays at low ionic strength.

Geiss, C.P., D. Keramisanou, N. Sekulic, M.P. Scheffer, B.E. Black, and A.S. Frangakis. 2014. CENP-A arrays are more condensed than canonical arrays at low ionic strength. Biophys. J., 106:875-882. PMID: 24559990

Identification and interrogation of combinatorial histone modifications.

Karch, K.R., J.E. DeNizio, B.E. Black, and B.A. Garcia. 2013. Identification and interrogation of combinatorial histone modifications. Front. Genet., 4: 264. PMID: 24391660