Kathryn E. Wellen, Ph.D.

1. Role of STAMP2 (STEAP4) in modulating inflammatory and metabolic responses in adipocytes: My interest in metabolism began while I was a graduate student in the laboratory of Gökhan S. Hotamisligil. My work in the Hotamisligil lab specifically focused on the role of six-transmembrane protein of prostate 2 (STAMP2; also known at STEAP4). We because interested in STAMP2 from a gene expression study that I performed at the start of my graduate training, in which we found that STAMP2 expression was induced by the inflammatory cytokine TNFα and suppressed by thiazolidinediones (Endocrinology, 2004). During the rest of my graduate training years, I worked to elucidate the function of STAMP2 in adipocytes, using both cell culture and mouse models. We found that STAMP2 acts to prevent inappropriate activation of inflammatory pathways in adipocytes, thereby contributing to the maintenance of systemic insulin sensitivity (Cell, 2007). We also published an influential review article that has been cited over 4000 times to date.
Wellen KE, Uysal KT, Wiesbrock S, Yang Q, Chen H, Hotamisligil GS. Interaction of tumor necrosis factor-alpha- and thiazolidinedione-regulated pathways in obesity. Endocrinology. 2004 May;145(5):2214-20. PubMed PMID: 14764635.
Wellen KE, Hotamisligil GS. Inflammation, stress, and diabetes. J Clin Invest. 2005 May;115(5):1111-9. PubMed PMID: 15864338; PubMed Central PMCID: PMC1087185.
Wellen KE, Fucho R, Gregor MF, Furuhashi M, Morgan C, Lindstad T, Vaillancourt E, Gorgun CZ, Saatcioglu F, Hotamisligil GS. Coordinated regulation of nutrient and inflammatory responses by STAMP2 is essential for metabolic homeostasis. Cell. 2007 May 4;129(3):537-48. PubMed PMID: 17482547; PubMed Central PMCID: PMC2408881.
The hexosamine biosynthetic pathway in coordination of metabolic and signaling pathways: After obtaining my PhD, I joined Craig B. Thompson’s laboratory, to further develop my expertise in cellular metabolism and gain training in the re-emerging field of cancer metabolism. I sought to understand how cells gauge nutrient availability and, to this end, investigated the role of the hexosamine biosynthetic pathway, which generates the glycosyl donor UDP-GlcNAc. We found that glucose utilization in the hexosamine pathway impacts growth factor receptor N-glycosylation and surface presentation, and that this serves as a mechanism to coordinate glucose and glutamine metabolism to support proliferation in hematopoietic cells (Genes and Development, 2010). More recently, we have reexamined the regulation of the hexosamine pathway under conditions of nutrient deprivation, identifying that pancreatic cancer cells employ a little studied hexosamine salvage pathway in response to glutamine deprivation to feed UDP-GlcNAc pools (eLife, 2021).
Wellen KE, Lu C, Mancuso A, Lemons JM, Ryczko M, Dennis JW, Rabinowitz JD, Coller HA, Thompson CB. The hexosamine biosynthetic pathway couples growth factor-induced glutamine uptake to glucose metabolism. Genes Dev. 2010 Dec 15;24(24):2784-99. PubMed PMID: 21106670; PubMed Central PMCID: PMC3003197.
Wellen KE, Thompson CB. A two-way street: reciprocal regulation of metabolism and signalling. Nat Rev Mol Cell Biol. 2012 Mar 7;13(4):270-6. PubMed PMID: 22395772.
Campbell SL and Wellen KE. Metabolic Signaling to the Nucleus in Cancer. Mol Cell, 2018 Aug 2; 71(3): 398-408. PMID: 30075141.
Campbell SL, Mesaros C, Izzo L, Affronti H, Noji M, Schaffer, BE, Tsang T,  Sun K,  Trefely S, Kruijning S, Blenis J, Blair IA, Wellen KE. Glutamine deprivation triggers NAGK-dependent hexosamine salvage, eLife, 2021
Acetyl-CoA at the interface of lipid metabolism and epigenetics: roles in cellular and organismal physiology: My interest in metabolic regulation of the epigenome, which constitutes a major current focus on my lab, also developed during my postdoctoral work in the Thompson lab. When I joined the Thompson lab in 2006, the lab had been studying acetyl-CoA metabolism and its role in supporting tumor growth through de novo lipid synthesis. Whether acetyl-CoA levels are also regulatory for lysine acetylation had been speculated and evidence for this had emerged in yeast, but little to no evidence for this possibly existed in mammalian cells. We found that acetyl-CoA production by ATP-citrate lyase (ACLY) is critical for maintaining overall levels of histone acetylation in multiple mammalian cell types, including adipocytes. This initial study, published in Science, was one of the first papers demonstrating metabolic control of the epigenome in mammalian cells. Since starting my own laboratory in 2011, we have extensively investigated the role of acetyl-CoA metabolism in regulation of lipid metabolism and the epigenome. We reported the development of Aclyf/f mice and MEF cell lines, as well as Adiponectin-Cre;Aclyf/f (adipocyte-specific KO) mice (Cell Reports, 2016). Using these reagents, we demonstrate that upregulation of ACSS2 and engagement of acetate metabolism is a key mechanism of compensation to supply acetyl-CoA for histone acetylation and lipid synthesis in the absence of ACLY, in vitro and in vivo. We further found that fructose metabolism to acetate produced by gut microbiota represents a key source of acetyl-CoA for hepatic lipogenesis (Nature, 2020). We also demonstrated that ACLY is crucial for sucrose-induced activation of ChREBP in adipocytes and in sustaining systemic metabolic homeostasis during carbohydrate feeding (Cell Reports, 2019).
Wellen KE, Hatzivassiliou G, Sachdeva UM, Bui TV, Cross JR, Thompson CB. ATP-citrate lyase links cellular metabolism to histone acetylation. Science. 2009 May 22;324(5930):1076-80. PubMed PMID: 19461003; PubMed Central PMCID: PMC2746744.
Zhao S, Torres AM, Henry R, Trefely T, Wallace M, Lee JV, Carrer A, Sengupta A, Kuo YM, Frey AJ, Meurs N, Viola JM, Blair IA, Weljie A, Snyder NW, Andrews AJ, Wellen KE. ATP-citrate lyase controls a glucose-to-acetate metabolic switch, Cell Rep, 2016, Oct 18;17(4):1037-1052. Pubmed PMID: 27760311; PubMed Central PMCID: PMC5175409
Fernandez S, Viola JM, Torres A, Wallace M, Trefely S, Zhao S, Affronti HC, Gengatharan JM, Guertin DA, Snyder NW, Metallo CM, Wellen KE. Adipocyte ACLY facilitates dietary carbohydrate handling to maintain metabolic homeostasis in females. Cell Rep, 2019, May 28;27(9):2772-2784. PubMed PMID:31141698; PubMed Central PMCID: PMC6608748
Zhao S, Jang C, Liu J, Uehara K, Gilbert M, Izzo L, Zeng X, Trefely S, Fernandez S, Carrer A, Miller KD, Schug ZT, Snyder NW, Gade TP, Titchenell PM, Rabinowitz JD, Wellen KE. Dietary fructose feeds hepatic lipogenesis via microbiota-derived acetate, Nature. 2020, Mar;579(7800):586-591. PubMed PMID: 32214246.
Acetyl-CoA at the interface of lipid metabolism and epigenetics: roles in tumor development and progression. A major emphasis of my laboratory has been to investigate the role of acetyl-CoA metabolism and metabolic control of the epigenome in tumor development and progression. One of the key questions we have sought to answer is whether oncogene-mediated metabolic rewiring impacts acetyl-CoA pools in such a way as to modulate the tumor epigenome. We found that oncogenic activation of the PI3K-AKT pathway promotes nuclear-cytosolic acetyl-CoA production and histone acetylation via ATP-citrate lyase (ACLY). Consistently, in human tumors, we identified a significant positive correlation between pAKT-S473 and histone acetylation levels. This study was published in Cell Metabolism and was one of the first demonstrations that oncogenic metabolic reprogramming contributes to alterations in the tumor epigenome independent of mutations in genes encoding metabolic enzymes. Following up on this study, we have identified a role for ACLY-S455 phosphorylation within the nucleus in providing acetyl-CoA for histone acetylation near sites of DNA double strand breaks, which facilitates BRCA1 recruitment and DNA repair by homologous recombination (Molecular Cell, 2017). We have also found that ACLY is crucial for KRASG12D-driven histone acetylation in pancreatic acinar cells and plays a distinct role in supporting acinar-to-ductal metaplasia in early pancreatic tumorigenesis. Once tumors form, however, ACSS2 is highly expressed and tumors can grow even in the absence of ACLY. Despite this metabolic flexibility, we found that targeting of downstream acetyl-CoA producing processes, specifically the mevalonate pathway and the reading of acetyl-lysine, can suppress tumor growth (Cancer Discovery, 2019). Most recently, in collaborative work with Nathaniel Snyder, we have developed methodology for compartmentalized acyl-CoA analysis termed SILEC-SF and leveraged this approach to discover that propionyl-CoA is enriched in the nucleus and that isoleucine catabolism feeds nuclear propionyl-CoA pools and histone lysine propionylation (Trefely et al, Mol Cell, 2022).

Lee JV, Carrer A, Shah S, Snyder NW, Wei S, Venneti S, Worth AJ, Yuan ZF, Lim HW, Liu S, Jackson E, Aiello NM, Haas NB, Rebbeck TR, Judkins A, Won KJ, Chodosh LA, Garcia BA, Stanger BZ, Feldman MD, Blair IA, Wellen KE. Akt-dependent metabolic reprogramming regulates tumor cell histone acetylation. Cell Metab. 2014 Aug 5;20(2):306-19. PubMed PMID: 24998913; PubMed Central PMCID: PMC4151270.
Sivanand S, Rhoades S, Jiang Q, Viney I, Zhang J, Tang J, Benci J, Yuan S, Zhao S, Carrer A, Bennett MJ, Minn AJ, Weljie AM, Greenberg RA, Wellen KE. Nuclear acetyl-CoA production by ACLY promotes homologous recombination, Mol Cell, 2017 Jul 20 Jul 20;67(2):252-265. PubMed PMID: 28689661; PubMed Central PMCID: PMC5580398
Carrer A, Trefely S, Zhao S, Campbell SL, Norgard RJ, Schultz KC, Sidoli S, Parris JLD, Affronti HC, Sivanand S, Egolf S, Sela Y, Trizzino M, Gardini A, Garcia BA, Snyder NW, Stanger BZ, Wellen KE. Acetyl-CoA metabolism supports multi-step pancreatic tumorigenesis. Cancer Discov. 2019 Mar;9(3):416-435. PubMed PMID: 30626590; PubMed Central PMCID: PMC6608748
Trefely S, Huber K, Liu J, Noji M, Stransky S, Singh J,  Doan MT, Lovell CD, von Krusenstiern E, Jiang H, Bostwick A, Pepper HL, Izzo L, Zhao Z, Xu JP, Bedi Jr KC, Rame JE,  Sidoli S, Bogner-Strauss J, Mesaros C, Wellen KE*, Snyder NW*. Quantitative sub-cellular acyl-CoA analysis reveals distinct nuclear metabolism and isoleucine-dependent histone propionylation, Mol Cell, 2022 (*co-corresponding authors)

Research Interest

cancer metabolism, metabolic regulation of the epigenome, metabolic signaling

Hongjun Song, Ph.D.

Mechanisms regulating adult hippocampal neural stem cells and neurogenesis.
Adult hippocampal neurogenesis reflects a remarkable form of structural plasticity in the mature mammalian brain. Fully characterizing this phenomenon could have far-reaching implications for understanding hippocampal function and revealing fundamental properties of neural development and the regenerative capacity of the central nervous system. Over the past 14 years, my laboratory has systemically investigated adult hippocampal neurogenesis at the molecular, cellular, and circuit levels and reported a number of key findings that have influenced the field. Via genetic clonal analysis, we conclusively demonstrated, for the first time, the existence of bona fide neural stem cells in the adult mammalian hippocampus, capable of both self-renewal and multipotent fate specification of progeny (Bonaguidi et al., Cell 2011). We also revealed how neural activity and experience can regulate the behavior of these stem cells (Song et al., Nature 2012; Jang et al. Cell Stem Cell 2013). We provided the first detailed characterization of newborn neuron integration into the existing neuronal circuitry and its underlying molecular, cellular and circuitry mechanisms (Ge et al., Nature 2006; Faulkner et al. PNAS 2009; Kang et al. Neuron 2011; Kim et al. Cell 2012; Sun et al. J Neurosci. 2013; Song et al. Nat. Neurosci. 2013). In collaboration with Dr. Guo-li Ming, we have discovered critical roles of DISC1, a psychiatric disorder risk gene, in regulating the development of newborn neurons during adult hippocampal neurogenesis (Duan et al. Cell 2007; Faulkner et al. PNAS 2008, Kim et al Neuron 2009; Kim et al. Cell 2012; Zhou et al. Neuron 2013). We discovered novel circuitry mechanisms whereby local neural activity influences the proliferation and development of newborn neurons in the hippocampus (Ma et al., Science 2009; Song et al., Nature 2012; Song et al., Nat Neurosci 2013).

Duan, X., Chang, J.H., Ge, S-y., Faulkner, R.L., Kim, J.Y., Kitabatake, Y., Liu, X-b., Yang, C-h., Jordan, J.D., Ma, D.K., Liu, C.Y., Ganesan, S., Cheng, H.J., Ming, G-l.*, Lu, B.* and Song, H-j.* (2007). Disrupted-In-Schizophrenia 1 regulates integration of new neurons in the adult brain. Cell 130, 1146-1158.
Bonaguidi, M.A., Wheeler, M., Shapiro, J.S., Stadel, R., Sun, G.J., Ming, G-l.*, and Song, H*. (2011). In vivo clonal analysis reveals self-renew and multipotent adult neural stem cell characteristics. Cell 145, 1142-55.
Song, J., Zhong, C., Bonaguidi, M.A., Sun, G.J., Hsu1, D., Gu, Y., Meletis, K., Huang, Z.J., Ge, S., Enikolopov, G., Deisseroth, K., Luscher, B., Christian, K., Ming, G-l., and Song, H. (2012). Neuronal circuitry mechanism regulating adult quiescent neural stem cell fate decision. Nature 489, 150-4.
Sun, G.J., Zhou, Y., Ito, S., Bonaguidi, M.A., Stein-O’Brien, G., Kawasaki, N., Modak, N., Zhu, Y., Ming, G-l., and Song, H. (2015). Latent tri-lineage potential of adult neural stem cells in the hippocampus revealed by Nf1 inactivation. Nature Neuroscience 18, 1722-4.

Neuroepigenetics and Neuroepitranscriptomics. Contrary to the long-held dogma that DNA methylation is a stable epigenetic mark in post-mitotic neurons, it is now recognized to be a robust form of plasticity in the adult nervous system. We have made significant contributions to the current understanding of epigenetic DNA modifications in the adult nervous system. My laboratory identified the first molecular mechanism regulating active DNA demethylation in mature neurons in vivo (Ma et al. Science 2009) and subsequently delineated molecular pathways mediating this process (Guo et al. Cell 2011). More recently, we showed that the neuronal DNA demethylation pathway plays fundamental roles in neuronal function, including regulation of basal levels of synaptic transmission and homeostatic synaptic plasticity (Yu et al. Nat. Neurosci. 2015). My laboratory has established a pipeline for high-throughput sequencing analysis, including RNA-seq, Chip-seq, Bisulfite-seq, ATAC-seq and single-cell RNA-seq and we have designed custom software programs for bioinformatic analyses. We published the first single-base resolution genome-wide DNA methylation profiles in neurons in vivo and showed large scale neuronal activity-induced dynamic methylation changes (Guo et al. Nat. Neurosci, 2011). Via single-base methylome analysis, we also demonstrated the presence of prominent nonCpG methylation in mature neurons in vivo and identified MeCP2 as the first nonCpG DNA methylation binding protein in the field (Guo et al. Nat. Neurosci. 2014). More recently, we have started to explore how methylation of mRNA can affect neurogenesis, axon regeneration and plasticity (Yoon et al. Cell 2017; Weng et al. Neuron 2018).

Ma, D.K., Jang, M.H., Guo, J.U., Kitabatake, Y., Chang, M.L., Pow-Anpongkul, N., Flavell, R.A., Lu, B., Ming, G.L., and Song, H-j. (2009). Neuronal activity-induced Gadd45b promotes epigenetic DNA demethylation and adult neurogenesis. Science 323, 1074-7.
Guo, J.U., Su, Y., Zhong, C., Ming, G.L., and Song, H. (2011). Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell 145, 423-34.
Yu, H., Su, Y., Shin, J., Zhong, C., Guo, J.U., Weng, Y-l., Gao, F., Geschwind, D.H., Coppola, G., Ming, G-l., and Song, H. (2015). Tet3 regulates synaptic transmission and homeostatic plasticity via DNA oxidation and repair. Nature Neuroscience 18, 836-843.
Yoon, K.J., Ringeling, F.R., Vissers, C., Jacob, F., Pokrass, M., Jimenez-Cyrus, D., Su, Y., Kim, N.S., Zhu, Y., Zheng, L., Kim, S., Wang, X., Doré, L.C., Jin, P., Regot, S., Zhuang, X., Canzar, S., He, C., Ming, G.L., and Song, H. (2017). Temporal control of mammalian cortical neurogenesis by m6A methylation. Cell 171(4):877-889.

Single-cell biology. A complete understanding of the structure and function of neural systems will require integrated analyses at multiple levels. A daunting obstacles to reaching this goal is the technical challenge of characterizing the behavior of single cells in vivo. Many neural processes can be described at the population level, but there are several domains where it is critical to identify molecular and functional properties at the single cell level. My laboratory has developed a “single cell genetic” approach to manipulate target genes in newborn neurons using retroviruses that led to a number of critical discoveries (Ge et al. Nature 2006; Duan et al, Cell 2007; Kim et al. Neuron 2009; Kang et al. Neuron 2011; Kim et al. Cell 2011; Jang et al. Cell Stem Cell 2013; Song et al. Nat. Neurosci. 2013). Our identification of bona fide neural stem cells in the adult brain required clonal analysis to determine whether radial glial-like cells were capable of both self-renewal and giving rise to multiple cell types, thus settling a debate in the field over whether neurons and glia were generated from lineage-restricted progenitors, as opposed to true stem cells (Bonaguidi et al. Cell 2011). To visualize dendritic and axonal growth over development, we devised a new strategy to allow us to reconstruct complete cellular processes of individual cells, revealing a stereotyped pattern of axonal targeting that further suggests the existence of guidance cues in the adult hippocampus (Sun et al., J Neurosci 2013). We have recent developed a single-cell RNA-seq technology and a bioinformatics pipeline to investigate transcriptomes of hundreds to thousands of heterogeneous cell types (Shin et al. Cell Stem Cell, 2015).

Ge, S-y., Goh. E.L.K., Sailor, K.A., Kitabatake, Y., Ming, G-l*. and Song, H-j*. (2006). GABA regulates synaptic integration of newly generated neurons in the adult brain. Nature 439, 589-593.
Bonaguidi, M.A., Wheeler, M., Shapiro, J.S., Stadel, R., Sun, G.J., Ming, G-l.*, and Song, H*. (2011). In vivo clonal analysis reveals self-renew and multipotent adult neural stem cell characteristics. Cell 145, 1142-55.
Jang, M., Bonaguidi, M.A., Kitabatake, Y., Sun, J., Song, J., Kang, E., Jun, H., Zhong, C., Su, Y., Guo, J.U., Wang, M.X., Sailor, K.A., Kim, J.Y., Gao, Y., Christian, K.M., Ming, G-l., and Song, H. (2013). Secreted frizzled-related protein 3 regulates activity-dependent adult hippocampal neurogenesis. Cell Stem Cell 12, 215-23.
Shin, J., Berg, D.A., Zhu, Y., Shin, J.Y., Song, J., Bonaguidi, M.A., Enikolopov, G., Nauen, D.W., Christian, K.M., Ming, G-l., and Song, H. (2015). Single-cell RNA-seq with Waterfall reveals molecular cascades underlying adult neurogenesis. Cell Stem Cell 17, 360-72.

Research Interest

Research in Dr. Hongjun Song’s laboratory focuses on two core topics: (1) neural stem cell regulation and neurogenesis in the developing and adult mammalian brain and how these processes affect neural function; (2) epigenetic and epitranscriptomic mechanisms and their functions in the mammalian nervous system. The lab is also interested in addressing how dysfunction of these mechanisms may be involved in brain disorders.

Brian C. Capell, M.D., Ph.D.

  • Demonstrated the first role for ferroptosis in epidermal differentiation and tumor suppression: Our recent studies have uncovered a potential link between the emerging form of programmed cell death known as ferroptosis and the execution of both epidermal differentiation and tumor suppression in the skin. Beyond identifying the mechanisms through which MLL4 (KMT2D) promotes differentiation and exerts its tumor suppressive functions, these studies have revealed evidence that ferroptosis may be the essential mechanism by which keratinocytes ultimately die and form the cornified envelope of the epidermal barrier. Given that numerous skin disorders are driven by dysregulated epidermal differentiation, combined with the ability to both pharmacologically induce and inhibit ferroptosis, these studies have provided proof of principal that ferroptosis modulation may a viable therapeutic strategy for a variety of skin disorders.

a.    Egolf S, Zou J, Anderson A, Simpson CL, Aubert Y, Prouty S, Ge K, Seykora JT, Capell BC. MLL4 mediates differentiation and tumor suppression through ferroptosis. Sci Adv. 2021 Dec 10;7(50):eabj9141. doi: 10.1126/sciadv.abj9141. Epub 2021 Dec 10. PMID: 34890228; PMCID: PMC8664260.

Research Interest

The Capell Lab seeks to understand epigenetic gene regulatory mechanisms, how they interface with metabolism and the immune system, and how when disrupted, they may contribute to disease, and in particular, cancer. By combining the incredible accessibility of human skin with the most cutting-edge techniques, we aim to identify therapeutic vulnerabilities in cancer, and novel targets to treat disease.

Erica Korb, Ph.D

The role of chromatin in neurodevelopmental disorders and disease.

Epigenetic regulation plays a critical role in many neurodevelopmental disorders, including Autism Spectrum Disorder (ASD). In particular, many such disorders are the result of mutations in genes that encode chromatin modifying proteins. However, while these disorders share many features, it is unclear whether they also share gene expression disruptions resulting from the aberrant regulation of chromatin. We examined 5 chromatin modifiers that are all linked to ASD despite their different roles in regulating chromatin. Using RNA-sequencing, we identified a transcriptional signature that is shared between multiple neurodevelopmental syndromes, helping to elucidate the link between epigenetic regulation and the underlying cellular mechanisms that result in ASD.

During the COVID-19 shut-down, we sought to apply our understanding of histone biology to better understand the ability of SARS-CoV-2 to evade the immune system. In rare cases, viral proteins dampen antiviral responses by mimicking critical regions of human histone proteins particularly those containing posttranslational modifications required for transcriptional regulation. We found that the SARS-CoV-2 protein encoded by ORF8 (Orf8) functions as a histone mimic of the ARKS motifs in histone 3. Orf8 is associated with chromatin, binds to numerous histone-associated proteins, and is itself acetylated at this site. Orf8 expression disrupts multiple critical histone post-translational modifications including H3K9ac, H3K9me3, and H3K27me3 and promotes chromatin compaction while Orf8. Further, SARS-CoV-2 infection in human cells and patient lung tissue cause these same disruptions to chromatin acting through the Orf8 histone mimic motif. These findings define a mechanism through which SARS-CoV-2 disrupts host cell epigenetic regulation.

In my postdoctoral work in the lab of Dr. C. David Allis, I studied Fragile X syndrome (FXS). FXS is the most common genetic cause of intellectual disability and autism and is caused by loss of function of fragile X mental retardation protein (FMRP). I found that a disproportionate number of FMRP targets encode transcriptional regulators, particularly chromatin-associated proteins. In addition, I discovered that the loss of FMRP results in widespread chromatin misregulation and aberrant transcription. Finally, I demonstrated that the small molecule inhibitor Jq1 which blocks chromatin binding of the BET family of proteins alleviated many of the transcriptional changes and behavioral phenotypes associated with FXS. Through this work, I elucidated a novel causative mechanism of epigenetic disruption underlying FXS and demonstrated that targeting transcription may provide new treatment approaches. This work was published in Cell and included in a patent.

  • Kee, J., Thudium, S., Renner, D.M., Glastad, K., Palozola, K., Zhang, Z., Li, Y., Lan, Y., Cesare, J., Poleshko, A., Kiseleva, A.A., Truitt, R., Cardenas-Diaz, F. L., Zhang, X., Xie, X., Kotton, D. N., Alysandratos, K. D., Epstein, J.A., Shi, P.Y., Yang, W., Morrisey, E., Garcia, B. A., Berger, S. L., Weiss, S. R., Korb, E. SARS-CoV-2 protein encoded by ORF8 contains a histone mimic that disrupts chromatin regulation. Nature. (PMC in progress)
  • Thudium S, Palozola K, L’Her E, Korb E. Identification of a transcriptional signature found in multiple models of ASD and related disorders. Genome Research. (PMC in progress)
  • Korb, E., Herre, M., Zucker-Scharff, I., Allis, C.D., Darnell, RB. 2017. Excess translation of epigenetic regulators contributes to Fragile X Syndrome and is alleviated by Bd4 inhibition. Cell. (PMC5740873)
  • Inquimbert, P., Moll, M., Latremoliere, A., Tong, C.K., Wang, J., Sheehan, G.F., Smith, B.M., Korb, E., Athie, M.C.P., Babaniyi, O., Ghasemlou, N., Yanagawa, Y., Allis, C.D., Hof, P.R., Scholz, J. 2018. NMDA Receptor activation underlies the loss of spinal dorsal horn neurons and the transition to persistent pain after peripheral nerve injury. Cell Rep. (PMC62761118)

Epigenetic regulation of information storage in the brain

While chromatin regulation is crucial for the mechanisms underlying memory formation, the role of many chromatin-associated proteins in the context of neuronal function remains unclear. During my postdoctoral fellowship, I focused on Brd4, which binds acetylated histones. Despite the increasing use of Brd4 inhibitors as therapeutics, it had never been examined in the brain. I found that specific synaptic signals which leads to enhanced binding of Brd4 to histones to activate transcription of key neuronal genes that underlie memory formation. The loss of Brd4 function affects synaptic protein content, which results in memory deficits in mice and decreases seizure susceptibility. Thus, Brd4 provides a critical and previously uncharacterized link between neuronal activation and the transcriptional responses that occur during memory formation. This work has implications for the use of BET inhibitors in clinical settings and in possible treatments for epilepsy.

I also contributed to work examining additional mechanisms linking epigenetic regulation of transcription to behavioral responses to experience. This work from our collaborators in the lab of Dr. Eric Nestler (Ichan School of Medicine at Mount Sinai), examined the role of the ACF chromatin remodeling complex in depression. I investigated mechanisms controlling activity-dependent changes in expression of ACF. Together, these projects advanced our understanding of the link between neuronal signaling and epigenetic regulation underlying animal behavior both in normal conditions and in the context of mental health disorders. Finally, as an independent investigator, we published a review on the links between chromatin and plasticity mechanisms in the brain.

  • Korb, E., Herre, M., Zucker-Scharff, I., Darnell, RB., Allis, C.D. 2015. BET protein Brd4 activates transcription in neurons and BET inhibitor Jq1 blocks memory in mice. Nat. Neuro. (PMC4752120)
  • Herre, M., Korb, E. The chromatin landscape of neuronal plasticity. Curr. Opin. Neurobiol. (PMID: 31174107)
  • Sun, H., Damez-Werno, D.M., Scobie, K.M., Shao, N., Dias, C., Rabkin, J., Koo, J.W., Korb, E., Bagot, R.C., Ahn, F.H., Cahill, M., Labonte, B., Mouzon, E., Heller, E.A., Cates, H., Golden, S.A., Gleason, K., Russo, S.J., Andrews, S., Neve, R., Kennedy, P.J., Maze, I., Dietz, D.M., Allis, C.D., Turecki, G., Varga-Weisz, P., Tamminga, C., Shen, L., Nestler. E.J. 2015. ACF chromatin remodeling complex mediates stress-induced depressive-like behavior. Nat. Med. (PMC4598281)

Linking the synapse to the nucleus.

During my graduate school research, I sought to elucidate previously unexamined mechanisms regulating learning and memory. I focused on a protein that is critical for memory formation and synaptic plasticity, the activity-regulated cytoskeletal protein. Arc expression is robustly induced by activity, and Arc protein localizes both to active synapses and the nucleus. While its synaptic function had been examined in great detail, it was not clear why or how Arc is localized to the nucleus. I identified distinct regions of Arc that control its localization, including a nuclear localization signal, a nuclear retention domain, and a nuclear export signal. Arc localization to the nucleus regulates transcription, PML nuclear bodies, synaptic strength, and homeostatic plasticity. This was the first demonstration that Arc was important in regulating transcription and one of the first indications that PML bodies play an important role in neurons.

Our lab has undertaken projects examining other pathways that link external signals to responses within the nucleus. As part of a collaboration with Dr. Steven Josefowicz at Weill Cornell Medical School, we examined a previously unexplored histone modification, histone H3.3 serine 31 phosphorylation (H3.3S31ph). We demonstrated that in neurons H3.3S31ph is rapidly and robustly induced in neurons in response to synaptic stimulation. This was critical in expanding finding to additional cell types and systems beyond an immune cell response and was recently published in Nature.

  • Korb, E., Wilkinson, C. L., Delgado, R.N., Lovero, K.L., Finkbeiner, S. 2013. Arc in the nucleus regulates PML-dependent GluA1 transcription and homeostatic plasticity. Nat. Neuro. 16(7), 874-83. (PMC3703835)
  • Korb, E., Finkbeiner, S. 2011. Arc in synaptic plasticity: from gene to behavior. Trends Neurosci. 34, 591-8. (PMC3207967)
  • Korb, E., Finkbeiner, S. 2013. PML in the Brain: From Development to Degeneration. Frontiers in Molecular and Cellular Oncology. 17, 242. (PMC3775456)
  • Armache, A., Yang, S., Martinez de Paz, A., Robbins, L.E., Durmaz, C., Yeong, J.Q., Ravishankar, A., Daman, A.W., Ahimovic, D.J., Klevorn, T., Yue, Y., Arslan, T., Lin, S., Panchenko, T., Hrit, J., Wang, M., Thudium, S., Garcia, B.A., Korb, E., Armache, K., Rothbart, S.B., Hake, S.B., Allis, C.D., Li H., Josefowicz, S.Z. 2020. Histone H3.3 phosphorylation amplifies stimulation-induced transcription. Nature. 583(7818), 852-857. (PMC75175895)

Research Interest

The Korb lab works at the intersection of neuroscience and epigenetics. Epigenetic regulation is extremely important in neuronal function and contributes to the creation of new memories, our ability to adapt to our environment, and numerous neurological disorders. We try to understand how the world around us can influence gene expression in our neurons to allow us to learn, adapt, and become the people we are today.
In the lab, we focus on chromatin and its role in neuronal function. Chromatin is the complex of DNA and proteins called histones, which package our DNA into complex structures and control access to our genes. To study the role of histones in neuronal function and in disorders such as autism, we combine methods such as microscopy, bioinformatics, biochemistry, behavioral testing, and more. We have multiple areas of research in the lab, all focused on the study of chromatin and how it regulates neuronal function and neurodevelopmental disorders.

Jonathan A. Epstein, M.D.

1. We have demonstrated that engineered T cells (CART cells) can be used to target activated fibroblasts in the diseased heart with resulting improvement in cardiac function. This work has received significant attention (highlighted in the NEJM, Scientific American, the NYTimes and elsewhere) and has opened the field of CART cells to the possibility of providing new treatments for fibrotic disorders.
Rurik JG, Tombácz I, Yadegari A, Méndez Fernández PO, Shewale SV, Kimura T, Younoss SO, Papp TE, Tam YK, Mui BL, Albelda SM, Pure E, June CH, Aghajanian H, Weissman D, Parhiz H, Epstein JA. CAR T cells produced in vivo to treat cardiac injury. Science. 2022 Jan 7;375(6576):91-96. doi: 10.1126/science.abm0594
Rurik JG, Aghajanian H, Epstein JA. Immune cells and immunotherapy for cardiac injury and repair. Circ. Res. 2021 May 28; 128(11):1766-1779. Review
Epstein JA, Rosenthal N, Feldman AM. Teasing the Immune System to Repair the Heart. N Engl J Med. 2020 Apr 23;382(17):1660-1662. Review
Aghajanian H, Kimura T, Rurik JG, Hancock AS, Leibowitz MS, Li L, Scholler J, Monslow J, Lo A, Han W, Wang T, Bedi K, Morley MP, Linares Saldana RA, Bolar NA, McDaid K, Assenmacher CA, Smith CL, Wirth D, June CH, Margulies KB, Jain R, Puré E, Albelda SM, Epstein JA. Targeting cardiac fibrosis with engineered T cells. Nature. 2019 Sep;573(7774):430-433. PMCID: PMC6752964

2. We have elucidated the role of epigenetics in heart development and we have applied this knowledge to explore novel therapies for adult cardiac disease including ischemia-reperfusion and congestive heart failure. In particular, we demonstrated that histone deacetylase inhibitors can prevent pathologic cardiac hypertrophy, which was counter to the prevailing dogma at the time. More recently, we have shown that nuclear architecture (how chromatin is packaged in three dimensions in the nucleus) contributes to cell identity, gene expression, and developmental competence.
Smith, C.L., Poleshko, A., Epstein, J.A. The nuclear periphery is a scaffold for tissue-specific enhancers. Nucleic Acids Res. 2021; 49: 6181-6195. PMCID: PMC8216274
Poleshko, A., Shah, P.P., Gupta, M., Babu, A., Moreley, M., Manderfield, L.J., Ifkovits, J.L., Dubois, N., Morrisey, E.E., Lazar, M.A., Smith, C.L., Epstein, J.A., Jain, R. Genome–nuclear lamina interactions regulate progenitor cell lineage restriction during cardiogenesis. Cell. 2017 Oct 7. (co-senior author and mentor of first author). PMCID: PMC5683101
Kook H, Lepore JJ, Gitler AD, Lu MM, Wing-Man Yung W, Mackay J, Zhou R, Ferrari V, Gruber P, Epstein JA. Cardiac hypertrophy and histone deacetylase-dependent transcriptional repression mediated by the atypical homeodomain protein Hop. The Journal of Clinical Investigation. 2003;112(6):863-71. PMCID: PMC193673.
Chen F, Kook H, Milewski R, Gitler AD, Lu MM, Li J, Nazarian R, Schnepp R, Jen K, Biben C, Runke G, Mackay JP, Novotny J, Schwartz RJ, Harvey RP, Mullins MC, Epstein JA. Hop is an unusual homeobox gene that modulates cardiac development. Cell. 2002;110(6):713-23.

3. My laboratory has contributed to our understanding of how the neural crest influences cardiac development and to the embryologic and genetic basis of congenital heart disease. Neural crest contribution to the heart was described in the early 1980s by Kirby and colleagues, and our laboratory extended these observations to mammalian systems, performed genetic fate-mapping in mouse models, identified candidate genes for congenital heart defects and described molecular pathways including Notch, Fgf, Wnt and Hippo that regulate cross-talk between neural crest, endothelium and second heart field derivatives in the heart.
Manderfield LJ, Engleka KA, Aghajanian H, Gupta M, Yang S, Li L, Baggs JE, Hogenesch JB, Olson EN, Epstein JA. Pax3 and hippo signaling coordinate melanocyte gene expression in neural crest. Cell Reports. 2014;9(5):1885-95. PMCID: PMC4267159.
Manderfield LJ, High FA, Engleka KA, Liu F, Li L, Rentschler S, Epstein JA. Notch activation of Jagged1 contributes to the assembly of the arterial wall. Circulation. 2012;125(2):314-23. PMCID: PMC3260393.
Katz TC, Singh MK, Degenhardt K, Rivera-Feliciano J, Johnson RL, Epstein JA, Tabin CJ. Distinct compartments of the proepicardial organ give rise to coronary vascular endothelial cells. Developmental Cell. 2012;22(3):639-50. PMCID: PMC3306604.
de la Pompa JL, Epstein JA. Coordinating tissue interactions: Notch signaling in cardiac development and disease. Developmental Cell. 2012;22(2):244-54. PMCID: PMC3285259.

4. We described the molecular basis for cardiovascular manifestations in Type 1 Neurofibromatosis using mouse and zebrafish models, including valvular pulmonic stenosis, endothelial defects and cardiac hypertrophy. We generated a zinc-finger knockout of the Nf1 genes in zebrafish, and demonstrated behavioral defects amenable to small molecule drug screening.
Wolman MA, de Groh ED, McBride SM, Jongens TA, Granato M, Epstein JA. Modulation of cAMP and ras signaling pathways improves distinct behavioral deficits in a zebrafish model of neurofibromatosis type 1. Cell Reports. 2014;8(5):1265-70. PMCID: PMC5850931
Shin J, Padmanabhan A, de Groh ED, Lee JS, Haidar S, Dahlberg S, Guo F, He S, Wolman MA, Granato M, Lawson ND, Wolfe SA, Kim SH, Solnica-Krezel L, Kanki JP, Ligon KL, Epstein JA, Look AT. Zebrafish neurofibromatosis type 1 genes have redundant functions in tumorigenesis and embryonic development. Disease Models & Mechanisms. 2012;5(6):881-94. PMCID: PMC3484870.
Ismat FA, Xu J, Lu MM, Epstein JA. The neurofibromin GAP-related domain rescues endothelial but not neural crest development in Nf1 mice. The Journal of Clinical Investigation. 2006;116(9):2378-84. PMCID: PMC1533876.
Gitler AD, Zhu Y, Ismat FA, Lu MM, Yamauchi Y, Parada LF, Epstein JA. Nf1 has an essential role in endothelial cells. Nature Genetics. 2003;33(1):75-9. PMCID: PMC3079412.

5. We were among the first to show that guidance molecules known to regulate the migration of axons in the central nervous system can also regulate angiogenesis and cardiac development. We have shown that members of the semaphorin and plexin families help to pattern the outflow tract of the heart, the pulmonary veins and coronary arteries, and the peripheral vasculature.
Epstein JA, Aghajanian H, Singh MK. Semaphorin signaling in cardiovascular development. Cell Metabolism. 2015;21(2):163-73. Review
Aghajanian H, Choi C, Ho VC, Gupta M, Singh MK, Epstein JA. Semaphorin 3d and semaphorin 3e direct endothelial motility through distinct molecular signaling pathways. The Journal of Biological Chemistry. 2014;289(26):17971-9. PMCID: PMC4140303.
Degenhardt K, Singh MK, Aghajanian H, Massera D, Wang Q, Li J, Li L, Choi C, Yzaguirre AD, Francey LJ, Gallant E, Krantz ID, Gruber PJ, Epstein JA. Semaphorin 3d signaling defects are associated with anomalous pulmonary venous connections. Nature Medicine. 2013;19(6):760-5. PMCID: PMC3746328.
Gitler AD, Lu MM, Epstein JA. PlexinD1 and semaphorin signaling are required in endothelial cells for cardiovascular development. Developmental Cell. 2004;7(1):107-16.

Research Interest

The Epstein laboratory studies molecular mechanisms of cardiovascular development and stem cell biology, and the implications of these mechanisms for understanding human disease. The lab has a longstanding interest in the genetic causes of congenital heart disease and transcriptional regulation of cell fate determination. Most recently, we have focused on epigenetics, including the role of histone deacetylases in cardiac development and adult heart function. Aims of current projects include gaining an understanding of the three-dimensional packaging of DNA and chromatin in the nucleus (“nuclear architecture”), and the regulation of cell differentiation by protein complexes that tether regions of the genome to the nuclear periphery. The lab has pioneered the concept that interactions between the nuclear lamina and the chromatin contribute to the regulation of entire gene programs that define cardiac cell types.

Rahul Kohli, M.D., Ph.D.

Elucidating and exploiting the mechanism of natural product macrocycle biosynthesis to make improved antibiotics. Many natural product antibiotics are brought to their bioactive conformations by cyclization. Macrocyclization rigidifies the small molecules to make them more effective at binding to their molecular targets. In my graduate work, I examined the natural product assembly lines of non-ribosomal peptide synthetases. In this work, I helped to establish that, rather than simply being responsible for unloading of the synthetase modules, the C-terminal domain of these assembly lines can catalyze release and macrocyclization of the natural products ref (a). After this initial discovery, I showed that this mechanism is broad ranging across a wide range of natural products spanning anti-infective and anti-cancer agents. We leveraged these advances to develop a chemoenzymatic approach to access alternative classes of related natural products (ref (b)), target new therapeutic areas (ref (c)), or improve antibiotic activity or specificity (ref (d)). This work demonstrates my abilities to decipher complex enzymatic reaction mechanisms.

Trauger JW, Kohli RM, Mootz HD, Marahiel MA, Walsh CT (2000) Peptide cyclization catalysed by the thioesterase domain of tyrocidine synthetase, Nature 407: 215-218.
Kohli RM, Burke MD, Tao J, Walsh CT (2003) Chemoenzymatic route to macrocyclic hybrid peptide/polyketide-like molecules, J Am Chem Soc 125: 7160-7161.
Kohli RM, Takagi J, Walsh CT (2002) The thioesterase domain from a nonribosomal peptide synthetase as a cyclization catalyst for integrin binding peptides, Proc Natl Acad Sci USA 99: 1247-1252 (PMC122175).
Kohli RM, Walsh CT, Burkart MD (2002) Biomimetic synthesis and optimization of cyclic peptide antibiotics, Nature 418: 658-661.

Targeting the SOS Pathway to combat antibiotic resistance. My clinical training has exposed me to the ever-increasing impact of antibiotic resistance and made it evident that “next generation” antibiotics only stall resistance. My involvement in making “next generation” antibiotics (see (1) above) made me realized the need to tackle the root cause, i.e., how antibiotic resistance arises. In this vein, we have focused on understanding how the DNA damage response of bacteria (also known as the SOS response) allows them to adapt to antibiotics or evolve and acquire resistance. Our detailed biochemical analyses (ref (a)) have allowed us to devise strategies for targeting the SOS response to potentiate antibiotics (ref (b)) and we have isolated first-in-class inhibitors of LexA (ref (c)). This work represents my lab’s effort to advance a new paradigm (ref (d)) in a field with great need for innovation.

Mo CY, Birdwell LD, Kohli RM (2014) Specificity Determinants for Autoproteolysis of LexA, a Key Regulator of Bacterial SOS Mutagenesis, Biochemistry 53:3158-68 (PMC4030785).
Mo CY, Manning SA, Roggiani M, Culyba MJ, Samuels AN, Sniegowski PD, Goulian M, Kohli RM (2016) Systematically Altering Bacterial SOS Activity under Stress Reveals Therapeutic Strategies for Potentiating Antibiotics, mSphere 1:e00163-16 (PMC4980697).
Mo CY, Culyba MJ, Selwood T, Kubiak JM, Hostetler ZM, Jurewicz AJ, Keller PM, Pope AJ, Quinn A, Schneck J, Widdowson KL, Kohli RM (2018) Inhibitors of LexA Autoproteolysis and the Bacterial SOS Response Discovered by an Academic-Industry Partnership, ACS Infect Dis 4:349-359 (PMC5893282).
Merrikh H, Kohli RM (2020) Targeting Evolution to Inhibit Antibiotic Resistance, FEBS J, 287: 4341-4352 (PMC7578009).

Explaining the basis for targeted mutagenesis by DNA deaminases. My clinical experiences have highlighted the importance of understanding how diversity arises on both sides of the host-pathogen interface. As a clear example of our ability to integrate nucleic acid chemistry with enzyme mechanisms, my lab has made great strides in understanding how targeted and purposeful mutation is used to improve our immune defenses. Activation Induced Deaminase (AID) is the key driver of antibody maturation, catalyzing the targeted deamination of cytosine to generate uracil within the immunoglobulin locus. We have helped to decipher how targeting takes place at the molecular level, demonstrating how particular hotspots in the genome are targeted by AID and its APOBEC3 relatives (refs (a) and (c)) and how the enzyme can discriminate DNA from RNA (ref (b)). Most recently, we have leveraged this knowledge to develop small molecule controllable genomic base editors. This work demonstrates my success in manipulating enzymes to reveal mechanism and alter function.

Kohli RM, Abrams SR, Gajula KS, Maul RW, Gearhart PJ, Stivers JT (2009) A portable hotspot recognition loop transfers sequence preferences from APOBEC family members to activation-induced cytidine deaminase, J Biol Chem 284: 22898-22904 (PMC2755697).
Nabel CS, Lee JW ,Wang LC Kohli RM (2013) Nucleic acid determinants for selective deamination of DNA over RNA by activation-induced deaminase, Proc Natl Acad Sci USA 110: 14225–14230 (PMC3761612).
Gajula KS, Huwe PJ, Mo CY, Crawford DJ, Stivers JT, Radhakrishnan R, Kohli RM (2014) High-throughput mutagenesis reveals functional determinants for DNA targeting by activation-induced deaminase, Nucleic Acids Res 42: 9964-75 (PMC4150791).
Berríos KN, Evitt NH, DeWeerd RA, Ren D, Luo M, Barka A, Wang T, Bartman CR, Lan Y, Green AM, Shi J, Kohli RM (2021) Controllable genome editing with split-engineered base editors. Nat Chem Biol. 17:1262-1270.

Addressing the enigmatic mechanism of DNA demethylation. Despite the wealth of studies on the importance of 5-methylcytosine (mC) in mammalian genomes, the mechanism by which DNA can be demethylated has remained elusive. While high profile studies had suggested that deamination of mC or related analogs could be involved in DNA demethylation, the biochemical feasibility of this reaction had not been established. Further, with the discovery of TET family enzymes that can oxidize mC, new avenues for demethylation have been recently proposed. We were the first to show that enzymatic deamination of oxidized analogs of mC is a disfavored route for demethylation and that TDG can deplete 5-formylcytosine from genomes (ref (a)). We have also demonstrated that TET2 shows catalytic processivity (ref (b)), providing a mechanism for the generation of highly oxidized mC species despite the relative dearth of their precursors, uncovered new reactivities for TET enzymes (ref (c)), and helped to reveal new and unexpected DNA modifications which may mediate demethylation. Finally, we contributed to work led by Dr. Fraietta showing the clinical importance of TET2 in CAR-T therapy (ref (d)). This work demonstrates my role in helping to shape to the field’s current model for how methylation, deamination and oxidation collaborate to establish the epigenome.

Nabel CS, Jia H, Ye Y, Shen L, Goldschmidt HL, Stivers JT, Zhang Y, Kohli RM (2012) AID/APOBEC deaminases disfavor modified cytosines implicated in DNA demethylation, Nature Chem Biol 8:751-8 (PMC3427411).
Crawford DJ, Liu MY, Nabel CS, Cao XJ, Garcia BA, Kohli RM (2016) Tet2 Catalyzes Stepwise 5-Methylcytosine Oxidation by an Iterative and de novo Mechanism, J Am Chem Soc 138:730-3 (PMC4762542).
Ghanty U, Wang T, Kohli RM. (2020) Nucleobase Modifiers Identify TET Enzymes as Bifunctional DNA Dioxygenases Capable of Direct N-Demethylation, Angew Chem Int Ed, 59: 11312-11315 (PMC7332413).
Fraietta JA, Nobles CL, Sammons MA, Lundh S, Carty SA, Reich TJ, Cogdill AP, Morrissette JJD, DeNizio JE, Reddy S, Hwang Y, Gohil M, Kulikovskaya I, Nazimuddin F, Gupta M, Chen F, Everett JK, Alexander KA, Lin-Shiao E, Gee MH, Liu X, Young RM, Ambrose D, Wang Y, Xu J, Jordan MS, Marcucci KT, Levine BL, Garcia KC, Zhao Y, Kalos M, Porter DL, Kohli RM, Lacey SF, Berger SL, Bushman FD, June CH, Melenhorst JJ. (2018) Disruption of TET2 promotes the therapeutic efficacy of CD19-targeted T cells, Nature, 558: 307-312 (PMC 29849141).

Rational engineering of DNA modifying enzymes for epigenetic analysis and sequencing. Utilizing a structurally guided approach, we evolved the first TET variants that selectively stall oxidation at 5-hydroxymethylcytosine (hmC) (ref (a)). These modified enzymes offer a novel tool that is being applied to understand the role of 5-hydroxymethylcytosine, as distinct from the highly oxidized bases 5-formylcytosine and 5-carboxycytosine. In a similar vein, we have exploited our knowledge of APOBEC selectivity (ref (b)) to develop an enzymatic method to localize 5-hydroxymethylcytosine in genomic DNA (ref (c)). These advances demonstrate our success in harnessing structure-function insights into DNA modifying enzymes to apply them to reveal new biology.
Liu MY, Torabifard H, Crawford DJ, DeNizio JE, Cao XJ, Garcia BA, Cisneros GA, Kohli RM (2016) Mutations along a TET2 active site scaffold stall oxidation at 5-hydroxymethylcytosine. Nature Chem Biol, 3:181-187 (PMC5370579).
Schutsky EK, Nabel CS, Davis AKF, DeNizio JE, Kohli RM (2017) APOBEC3A efficiently deaminates methylated, but not TET-oxidized, cytosine bases in DNA. Nucleic Acids Res. 45:7655-7665 (PMC5570014).
Schutsky EK, DeNizio JE, Hu P, Liu MY, Nabel CS, Fabyanic EB, Hwang Y, Bushman FD, Wu H, Kohli RM. (2018) APOBEC-Coupled Epigenetic Sequencing permits low-input, bisulfite-free localization of 5-hydroxymethylcytosine at base resolution. Nature Biotech. 36: 1083–1090 (PMC6453757).
Caldwell BA, Liu MY, Prasasya RD, Wang T, DeNizio JE, Leu NA, Amoh NYA, Krapp C, Lan Y, Shields EJ, Bonasio R, Lengner CJ, Kohli RM, Bartolomei MS. (2021) Functionally distinct roles for TET-oxidized 5-methylcytosine bases in somatic reprogramming to pluripotency. Mol Cell. 81: 859-869 (PMC7897302).

Research Interest

While we conventionally think of genomic DNA as a simple polymer of A‘s, C‘s, G‘s, and T‘s, the chemistry of the genome is in fact far more interesting.

Our laboratory focuses on the DNA modifying enzymes that provide an added layer of complexity to the genome. These enzymes can be involved in the purposeful introduction of mutations or in the chemical modification of nucleobases, making DNA a remarkably dynamic entity. Many of these processes are at the heart of the battle between the immune system and pathogens or are central to epigenetics.

Our work can be broadly classified in two areas:

Enzymatic deamination, oxidation and methylation of cytosine bases, with a focus on AID/APOBEC DNA deaminases and TET oxygenases

Targeting Pathogen Pathways that Promote Evolution and Antibiotic Resistance, with a focus on the LexA/RecA axis governing the bacterial SOS response.

We utilize a broad array of approaches, which include 1) biochemical characterization of enzyme mechanisms, 2) chemical synthesis of enzyme probes, and 3) biological assays spanning bacteriology, immunology, and virology to study DNA modifying enzymes and pro-mutagenic pathways.

Our research program aims to understand diversity generating enzymes and pathways in vitro, to perturb their function in physiological settings, and to harness the biotechnological potential of these diversity-generating pathways.

Rajan Jain, M.D.

Our work is broadly characterized by three major themes.

First, we are defining the molecular factors regulating 3D chromatin spatial positioning. We have shown that lamina-chromatin interactions (lamina-associated domains or LADs) mediate cardiomyocyte differentiation during cardiac development, establishing physiologic relevance of spatial positioning. More recently, we have shown that pathogenic LMNA variants associated with cardiomyopathy compromise genome organization at the nuclear lamina in cardiomyocytes but not in hepatocytes or adipocytes. The disruption in lamina-chromatin interactions is targeted and results in the misexpression of non-myocyte genes in mutant cardiomyocytes. Finally, we have generated an atlas of lamina-chromatin interactions across multiple human cell types and defined a new, intermediate LAD state. Collectively, my work has shown that 3D spatial positioning regulates cardiac myocyte cellular identity and contributes to phenotypes observed in human laminopathies. We are now working to reveal the molecular mechanisms underlying spatial positioning, using genome-wide screens, mouse and human iPSC models, high resolution imaging and genomics. We work closely with the Joyce and Lakadamyali laboratories. This work has been supported by my NIH New Innovator award (DP2HL147123) and expanded by our interactions with the 4D Nucleome Consortium (U01DA052715).

A second major area of investigation in the laboratory is understanding how Bromodomain and Extraterminal Domain (BET) proteins regulate cardiac cell fate and state. I first became interested in BET proteins as an undergraduate in the Tjian laboratory (PMID: 12620225). In my program, we are examining the cell type specific roles of individual BET proteins in cardiac cell types, with a particular focus on BRD4. We have shown that BRD4 gains locus-specificity in adult cardiac myocytes by interacting with GATA4. Most recently, my group discovered a novel role for BRD4 in genome folding by regulating stability of cohesin on chromatin. Loss of BRD4 in neural crest results in phenotypes resembling human syndromes associated with mutations in cohesin and associated proteins which we mechanistically attribute to the role of BRD4 in genome folding. Our data is amongst the first demonstrating the functional relevance of genome folding to cellular identity. We are extending this work to identify other regulators of genome folding, their mechanism of action and relevance to development and disease. The work is supported by an NHLBI R01 (HL139783).

Our work is further advanced by a third theme in longstanding collaborative work with the Raj lab to elucidate determinants of cellular plasticity, which may inform our understanding of transdifferentiation. My group has shown demonstrated the lineage relationships in various tissues and organs, both in vivo and in vitro. Taken together, our studies suggest that lineage plasticity exists and helps maintain tissue homeostasis. This is funded through a Transformative Research Award (R01GM137425).

My lab strives to explain our science to the lay public:

https://www.youtube.com/watch?v=fthq4chhrGo&list=LL&index=1&t=1s

https://www.youtube.com/watch?v=t2uOlbohsNo&list=LL&index=2&t=271s

Research Interest

Our research program is driven by the central hypothesis that three-dimensional (3D) genome organization orchestrates the establishment and maintenance of cardiac cellular identity. Uncovering the molecular mechanisms that guide nuclear architecture will transform our understanding of how coordinated gene expression is regulated and cellular identity is achieved. Progenitor cells progressively restrict their lineage potential during cardiac development. The mechanisms that establish and maintain cellular identity through mitosis and over a lifespan underlie health. Compromised differentiation and identity have been linked to several diseases. Models underlying fate determination and identity often focus on transcription factors and/or niche signals. Current paradigms fail to reconcile how the interplay between a finite number of morphogens and lineage specific transcription factors result in 200+ cell types with distinct and stable identities. We posit that nuclear architecture represents a critical mechanism for achieving coordinated regulation of hundreds of genes underlying cellular identity by governing their accessibility or availability. My interdisciplinary training and research program in developmental biology and epigenetics, background as a practicing cardiologist, collaborative network have allowed me to build a strong body of work demonstrating that nuclear architecture regulates cellular identity in development and disease. We aim to decipher the rules governing spatial positioning of loci and genome folding, and to reveal their importance to cardiac development and disease.

Previous Next
Close
Test Caption
Test Description goes like this