Courses of Interest

Doris Wagner

BIOL4234/CAMB5500: Epigenetics (Spring)

This is a required course of the Genetics and Epigenetics Program and is designed to provide students with a comprehensive overview of genetic concepts and methodology. The course is organized into three parts: I Fundamental genetic concepts and tools; II Genetics of model organisms (with focus on worms, flies, zebrafish and mice); III Human genetics and disease. Each week there will be two lectures and one associated discussion/problem-solving session. Discussions emphasize practical aspects of generating and interpreting genetic data.

Roberto Bonasio & Thomas Jongens

BIOM5550: Regulation of the Genome (Spring)

Regulation of gene expression including chromatin structure, transcription, DNA modification, RNA processing, translation, control of gene expression via microRNAs and post-translational processing.

Irfan Asangani &  Luca Busino

CAMB 5300:  THE CELL CYCLE, GENOME INTEGRITY, AND CANCER (Fall)

This seminar course focuses on molecular and biochemical events that regulate cell cycle progression and genome maintenance, and explores how these processes influence cancer etiology and treatment. Specific topics will familiarize students with the key principles and recent developments within these areas. These topics include CDK-Cyclins and their inhibitors, regulation of G1-S and G2-M phase cell cycle transitions, DNA damage checkpoints and repair, the impact of chromatin regulation on DNA repair, and how each of these processes affects cancer etiology and treatment. In depth reading and evaluation of research literature will be primarily used to accomplish these aims, as well as provide instruction on rigorous experimental design and data interpretation.

Zhaolan (Joe) Zhou, Erica Korb, & Hao Wu

CAMB7130 Neuroepigenetics / NGG 7130 Neuroepigenetics (Fall)

This is a course intended to bring students up to date concerning our understanding of Neural Epigenetics. It is based on assigned topics and readings covering a variety of experimental systems and concepts in the field of Neuroepigenetics, formal presentations by individual students, critical evaluation of primary data, and in-depth discussion of potential issues and future directions, with goals to: 1) Review basic concepts of epigenetics in the context of neuroscience, 2) Learn to critically evaluate a topic (not a single paper) and set the premise, 3) Improve experimental design and enhance rigor and reproducibility, 4) Catch up with the most recent development in neuroepigenetics, 5) Develop professional presentation skills – be a story teller.

Bomyi Lim

CBE5170: Principles of Genome Engineering

This course covers up-to-date techniques in genome engineering and its application in basic research and translational medicine. Genetic engineering techniques including site-directed DNA recombination (Cre-Lox, Phi31 integrase), genome editing (TALEN, CRISPR/Cas-9), next generation sequencing, and molecular imaging will be covered. Key concepts in genomics, epigenetics, gene regulation will be introduced, and application of genetic engineering techniques in the field of developmental biology, stem cell biology, and synthetic biology will be discussed.
Previous Next
Close
Test Caption
Test Description goes like this